Oxaziclomefone, a new herbicide, inhibits wall expansion in maize cell-cultures without affecting polysaccharide biosynthesis, xyloglucan transglycosylation, peroxidase action or apoplastic ascorbate oxidation.

نویسندگان

  • Nichola O'Looney
  • Stephen C Fry
چکیده

BACKGROUND AND AIMS Oxaziclomefone (OAC), a new herbicide, inhibits cell expansion, especially in roots and cell-cultures of gramineous monocots. OAC does not affect turgor in cultured maize cells, and must therefore inhibit wall-loosening or promote wall-tightening. METHODS The effects of OAC in living cultured maize cells on various biochemical processes thought to influence wall extension were studied. KEY RESULTS OAC did not affect 14C-incorporation from D-[U-14C]glucose into the major sugar residues of the cell wall (cellulosic glucose, non-cellulosic glucose, arabinose, xylose, galactose, mannose or uronic acids). OAC had no effect on 14C-incorporation from trans-[U-14C]cinnamate into wall-bound ferulate or its oxidative coupling-products. OAC did not influence the secretion or in-vivo action of peroxidase or xyloglucan endotransglucosylase activities-proposed wall-tightening and -loosening activities, respectively. The herbicide did not affect the consumption of extracellular L-ascorbate, an apoplastic solute proposed to act as an antioxidant and/or to generate wall-loosening hydroxyl radicals. CONCLUSIONS OAC decreased wall extensibility without influencing the synthesis or post-synthetic modification of major architectural wall components, or the redox environment of the apoplast. The possible value of OAC as a probe to explore aspects of primary cell wall physiology is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of the Air Pollutant SO(2) on Leaves : Inhibition of Sulfite Oxidation in the Apoplast by Ascorbate and of Apoplastic Peroxidase by Sulfite.

After SO(2) has entered leaves of spinach (Spinacia oleracea) through open stomata and been hydrated in the aqueous phase of cell walls, the sulfite formed can be oxidized to sulfate by an apoplastic peroxidase that is normally involved in phenol oxidation. The oxidation of sulfite is competitive with the oxidation of phenolics. During sulfite oxidation, the peroxidase is inhibited. In the abse...

متن کامل

Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals.

Scission of plant cell wall polysaccharides in vivo has generally been assumed to be enzymic. However, in the presence of l-ascorbate, such polysaccharides are shown to undergo non-enzymic scission under physiologically relevant conditions. Scission of xyloglucan by 1 mM ascorbate had a pH optimum of 4.5, and the maximum scission rate was reached after a 10-25-min delay. Catalase prevented the ...

متن کامل

Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants.

1. Cell-free extracts of all plants tested contained a novel enzyme activity (xyloglucan endotransglycosylase, XET) able to transfer a high-Mr portion from a donor xyloglucan to a suitable acceptor such as a xyloglucan-derived nonasaccharide (Glc4Xyl3GalFuc; XG9). 2. A simple assay for the enzyme, using [3H]XG9 and based on the ability of the [3H]polysaccharide product to bind to filter paper, ...

متن کامل

Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation.

Ascorbate levels and redox state, as well as the activities of the ascorbate related enzymes, have been analysed both in the apoplastic and symplastic spaces of etiolated pea (Pisum sativum L.) shoots during cellular differentiation. The ascorbate pool and the ascorbate oxidizing enzymes, namely ascorbate oxidase and ascorbate peroxidase, were present in both pea apoplast and symplast, whereas ...

متن کامل

Microanalysis of plant cell wall polysaccharides.

Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 96 6  شماره 

صفحات  -

تاریخ انتشار 2005